
Effects of Time-Dependent Heat Sources On Neutron Star Crust Cooling

A. Smith∗ and H. M. Doss
Physics and Engineering Department, Point Loma Nazarene University

(2019-2020 PLNU Honors Program)
(Dated: April 30, 2020)

Neutron star crust cooling can give insights to the interior composition of the stars. Using dStar
and the neutron star cooling simulation code NSCool, a variable mass is accreted onto different
neutron star models. Previous accretion simulations have commonly assumed a constant mass
accretion over a long epoch; this research investigates the effects of different accreting mass accretion
rate distributions and focuses on a periodic Gaussian distribution, with a finer time epoch. The
simulations produce plots of mass accretion rate distributions as well as effective temperature and
luminosity as viewed by a distant observer over time. The effects on the quiescent cooling curves due
to the time-dependent distribution shapes of accreted mass are found to have only short time-scale
effects, with differences only noticeable on timescales as on the order of the accretion events.

I. INTRODUCTION

Since the theorization of neutron stars (NSs) in 1933,
and their discovery in 1967 [1], NSs have played a key
part in understanding how the universe works, as they
are natural laboratories to study matter at extreme den-
sities. Specifically, NSs are theorized to be responsible for
some of the origins of heavy nuclei, and in recent years the
LIGO and VIRGO spectrometers have seen NS mergers,
providing new opportunities to understand the interior of
NSs [2]. However, binary NSs only represent a fraction
of all NSs. NSs with a companion star, that is not a NS,
provide their own opportunities for new knowledge. Of
specific interest in this research is the accretion of mat-
ter from the companion star onto the surface of the NS
and how the star cools after the accretion period ends.
Computer programs, such as MESA (Modules for Ex-
periments in Stellar Astrophysics), dStar, and NSCool,
combined with observational data have provided some
understanding of the processes occurring in the crust of
a NS.

FIG. 1. A cross section of a NS

A NS is the corpse of a massive main sequence star
that has gone supernova. A NS supports its mass by

∗ asmith1493@pointloma.edu

neutron degeneracy pressure and nucleon-nucleon inter-
actions, as opposed to thermal pressure in a standard
star. Degeneracy pressure arises from the Pauli exclu-
sion principle where two identical half-integer spin par-
ticles, known as fermions, are prohibited from occupying
the same quantum state. The degeneracy is due to the
compactness of the object, and the degeneracy pressure
is high enough to support the star against gravitational
collapse. NSs are extremely compact with, on average,
1.4 M� in a sphere of radius 11 km. The star is not
uniformly made of pure neutrons however, it has several
layers as shown in Fig. 1. The star has a very thin at-
mosphere with lighter atoms extending not more than
a meter above its surface. Below the surface is a very
thin envelope, sometimes called an ocean composed of a
plasma of electrons and nuclei. The outer crust is com-
posed of a dense crystalline lattice embedded in a gas
of degenerate electrons. The nuclei in the lattice may
also have more neutrons present in the nucleus, creating
heavier neutron-rich atomic nuclei which are stabilized
from decaying by the high density. Meanwhile, in the
inner crust heavier and heavier neutron-rich atomic nu-
clei are formed, with some free neutrons in the mix. The
transition from the inner crust to the mantel is character-
ized by what is known as nuclear pasta, where nuclei are
compressed so much that they form “stringy,” pasta-like
structures.

Many different theories try to explain the core of a
NS. Quark stars or hybrid neutron-quark stars are theo-
rized to occur when the dense environment of a neutron
star allows for quarks to deconfine themselves from neu-
trons and form quark matter. In hybrid stars, the core
of the star is theorized to be made of this quark matter
while the mantel is made of nuclear matter. Furthermore,
it has been theorized that strange quark matter could be
present inside NSs. These stars, called strange stars, oc-
cur when quark matter transforms into strange matter,
where the quark turns into equal parts up, down, and
strange quarks. Other baryonic matter may be present
inside NSs, such as hyperons, pions, or kaons [1].

Two ways to investigate the makeup of the cores
of NSs are either through observations of collisions or

2

through the investigation of the heating and cooling of
NSs after outbursts. Heat can be transferred to the in-
terior of a NS so that the NS remains incandescent for
a while after accretion ends and quiescence begins; this
serves as a thermometer for the inner layers of a NS [3].
It also provides a window to processes in the core of the
star and may provide clues about its makeup. One group
has used a program to model multiple outbursts of Aql
X-1 [4]. They found that Aql X-1 does not reach crust-
core thermal equilibrium and does not reach the base
level temperature between outbursts. They also found
that they were able to closely reproduce data if they fit
the data with a model that varied envelope composition
and heating parameters.

Accretion heats up a NS. Matter is pulled off a com-
panion star by the strong gravitational attraction to the
NS and eventually lands on the surface of the NS. The
fresh matter is compressed by the strong gravitational in-
teraction to the point of pyconuclear fusion in the inner
crust, which releases about 2 MeV/u. Two-step electron
captures will create local heat sources as well; both these
sources of heating occur only during active accretion [5].

The NS then cools by means of electromagnetic ra-
diation, primarily in X-rays; heat is conducted to the
surface predominately by degenerate electrons and is set
by electron-ion scattering [5]. This allows the heat from
the inner crust to escape via photons at the surface of the
NS. A NS can also cool by means of Urca cooling. This is
a cyclic electron-capture and β−-decay, which produces
neutrinos that escape the NS and thus radiate heat away.
This cycle is active during and after accretion and is not
one-way like the electron-capture heating [5].

Observations of NSs provide simulations with some
realistic parameters to base simulations on. The NS Aql
X-1 has garnered particular interest due to its frequent
outbursts followed by period of quiescence and cooling.
Data has been collected by the Rossi X-ray Timing Ex-
plorer (RXTE), Neil Gehrels Swift Observatory (Swift),
and Monitor of All-Sky X-ray Image (MAXI).

Sending a probe to these stars is not an option due
to the incredibly far distances to NSs, hence computer
simulations are the best way to test and predict prop-
erties of NSs. The basis for several stellar simulation
programs is MESA, which has been developed by a large
international collaboration [6–10]. The MESA EOS is a
blend of the OPAL [11], SCVH [12], PTEH [13], HELM
[14], and PC [15] EOSes. Radiative opacities are pri-
marily from OPAL [16, 17], with low-temperature data
from [18] and the high-temperature, Compton-scattering
dominated regime by [19]. Electron conduction opacities
are from [20]. Nuclear reaction rates are a combination of
rates from NACRE [21], JINA REACLIB [22], plus addi-
tional tabulated weak reaction rates [23–25]. Screening
is included via the prescription of [26]. Thermal neu-
trino loss rates are from [27]. MESA can be used to
evolve a selection of standard stars, as well as simulate
accretion events onto a NS and simulate explosive nucle-
osynthesis from supernova events. MESA serves as the

foundation for dStar [28], a separate and more specific
simulation program simulating properties of NSs. The
program dStar has been developed primarily by Dr. Ed-
ward Brown at Michigan State University. Inside dStar
is NSCool, which models the cooling of the crust of the
NS, as well as many sample routines to understand how
to input simulations to run.

This work explores simulated luminosities of cool-
ing NSs when differently shaped mass distribution are
accreted onto the NS; the distinguishability of the lumi-
nosities are examined considering the thermal diffusion
timescale.

II. SIMULATION METHODS

Using MESA version 12115 and its SDK [29], dStar,
and python 3.7.3, we developed a python wrapper pro-
gram (Appendix A) that generates Gaussian shaped mass
accretion rate distributions. These distributions accrete
onto a 1.6 M� NS with a core radius of 10.42 km. NSCool
outputs “observed” temperatures from infinity. In order
to compare these theoretical values with real observed
luminosity, the Stefan-Boltzmann law is used

L∞ph = 4πσSBR
2
∞(T∞eff)4, (1)

where L∞ph is the luminosity observed by a distant ob-
server, σSB is the Stephan-Boltzmann constant, T∞eff is
the effective temperature observed by a distant observer.
R∞ is the radius of the NS according to a distant observer

R∞ = R(1 + zg), (2)

(1 + zg) =
1√

1 − 2GM
Rc2

, (3)

where M is the mass of the NS, G is the universal gravi-
tational constant, R is the radius of the NS, and c is the
speed of light.

The inlist file controls many of the parameters that
affect the heating and cooling of a NS. Since the primary
focus of this research is how differences in time-dependent
mass accretion affects the cooling curve, these parame-
ters were not changed. However, these likely also affect
the cooling curve. In this research, the NS core tem-
perature is fixed, at 3.25 × 107 K, while the atmosphere
and crust temperatures are not fixed. Sixty-four epochs
were used in total, with 45 epochs occurring in the time
frame −90 to 0 days where mass accretion would be in-
putted. Other routines were set to the values seen in Fig.
2. These include a factor for heating caused by neutri-
nos that originate from the decay of pions [30], which
were created during the impact of material, thermal con-
ductivity factors in the nuclear pasta layer of a NS set
(set by the impurity parameter Qimp in the pasta layer),
pressure boundary conditions, and an atmospheric light
element composition factor [30]. Qimp is set to 1 and

3

FIG. 2. The other inputs and controls in the inlist file, all
of which affect the heating and cooling of NSs. These values
were held constant throughout the simulations.

arises from impurities causing additional electron scat-
tering which inhibits thermal diffusion and therefore sets
the thermal gradient in the crust at low temperatures [5].
Urca cooling factors are also included here, though they
are turned off.

The python program generates multiple random-
ized distributions and passes these values into the in-
list file. The Gaussian distributions are formed with the
skewnorm.rvs() python function, with a sample size of
fifty. One hundred of these randomly generated Gaus-
sians are accreted to obtain uncertainties. It then re-
trieves the temperature output from dStar, calculates the
luminosity, and averages these values. A plot is produced
displaying the mass accretion rate distribution, temper-
ature, and luminosity with their corresponding errors.
The luminosity values are also saved so that the effects of
the different distributions can be statistically compared.

In order to determine if the mass accretion rate
distributions cause a difference, the thermal diffusion
timescale also needs to be calculated. dStar periodically
saves outer crust data which can be used to calculate the

diffusion time using the following equation

τ =
1

4

[∫ P

0

(
ρCp

K

)1/2
dP

ρg

]2

, (4)

where ρ is the mass density, Cp is the specific heat per
unit mass, K is the thermal conductivity, P is the pres-
sure, and g is the gravity [31].

III. SIMULATION RESULTS

The Gaussian distributions are centered at −45 days,
and have the same total amount of mass accreted. The
luminosity values with their standard deviations are com-
pared with a two sample t-test, with the null hypothesis
that the luminosity values between two different mass
accretion rate distributions are different and the alter-
native hypothesis that they are the same. If the p-
value, or probability that alternative hypothesis is true,
is above 0.01, then the null hypothesis is rejected in fa-
vor of the alternative hypothesis. This statistical test
provides insight to the day that the difference between
“observed” luminosities are indistinguishable when com-
pared between the different initial mass accretion rate
distributions.

FIG. 3. A single Gaussian mass accretion rate distribution
accreted with mean at µ = −45 days and a standard deviation
of σ = 3 days

Fig. 3 shows a single accretion event centered at −45
days, the total mass being accreted is 1.767 × 1023 g,
where as Fig. 4 shows this mass equally split between
two accretion events still being centered at −45 days,
with the too modes having a separation of 45 days. All
of the distributions have a spread of 3. As seen by the p-
values in Table I, between 64 and 128 days, the observed
luminosities between the accretion distributions shown
in Fig. 3 and Fig. 4 become indistinguishable from one
another.

Fig. 5 shows a single accretion event centered at −45
days, the total mass being accreted is 1.767 × 1023 g,

4

FIG. 4. Two Gaussian mass accretion rate distributions
accreted(µ = −67.5, 22.5, σ = 3)

Days Fig. 3 - Fig. 4 Fig. 5 - Fig. 6 Fig. 7 - Fig. 8
p-values p-values p-values

0 0 0 0
1 0 0 0
2 0 0 0
4 0 0 0
8 0 0 0
16 0 0 0
32 0 0.005 0
64 0 0.003 0
128 0.012 0.146 1
256 1 0.155 1
512 1 1 1
1024 1 1 1
2048 1 1 1
4096 1 1 0.312
8192 1 1 1
16384 1 1 1
32768 1 1 1
65536 1 1 1

TABLE I. Days with p-values for the differences between lu-
minosities from Figs. 3-8, comparing the results out to tem-
peratures and luminosities observed before the accretion out-
burst.

whereas Fig. 6 shows this mass split between two ac-
cretion events. One is the main event, with a mass of
1.749 × 1023 g, and a trailing, smaller event with a mass
of 1.767 × 1021 g. The center of the main event is at
−45 days, with a spread of 5, and the trailing event has
a center of −15 days, and a spread of 2.5. As seen by
the p-values in Table I, between 64 and 128 days, the
observed luminosities between the accretion distributions
shown in Fig. 5 and Fig. 6 become indistinguishable from
one another.

Fig. 7 shows two skewed Gaussian accretion events
at centered at −45 days. The distributions have a spread
of 5 and a skew factor of 5, with the tails facing towards
the beginning and end of the accretion event. Fig. 8 also

FIG. 5. Single Gaussian mass accretion rate distribution ac-
creted (µ = −45, σ = 5)

FIG. 6. Gaussian mass accretion rate distribution accreted
(µ = −45, σ = 5) with a small trailing accretion event (µ =
−15, σ = 2.5)

FIG. 7. Two skewed Gaussian mass accretion rate distribu-
tions accreted, with the skews facing outward

shows two skewed Gaussian accretion events at centered
at −45 days. The distributions also have a spread of 5

5

FIG. 8. Two skewed Gaussian mass accretion rate distribu-
tions accreted, with the skews facing inward

and a skew factor of 5, although the tails facing towards
the center of the accretion event. As seen by the p-values
in Table I, between day 64 and day 128, the observed
luminosities between the accretion distributions shown
in Fig. 7 and Fig. 8 become indistinguishable from one
another.

The thermal diffusion timescale, Eq. (4), is around
114 days for the simulated star. This corresponds with
the order of magnitude that the luminosity curves be-
come indistinguishable.

IV. SUMMARY

Throughout these simulations the only variable that
is changed is the shape of the mass accretion rate distri-
bution within a period of 90 days. Overall, these results

suggest that time-dependent mass accretion has only
brief effects on cooling curves and that these effects be-
come indistinguishable observationally after the thermal
diffusion timescale. Other factors could affect the respon-
sivity of quiescent cooling based on time-dependent mass
accretions, but for these moderate constraints somewhere
between 109 and 173 days after the center of accretion,
all the distributions investigated are statistically identi-
cal. When investigating long term cooling of NSs, these
results suggest that only the total amount of mass ac-
creted has an effect on observed luminosities long after
the accretion event, not the shape or distribution of the
mass within a given duration. Consistent measurements
of luminosity closer to and during the accretion could
provide enough information to reconstruct the accretion
distributions. These findings suggest that for NSs with
periodic accretions, such as Aql X-1, the mass accretion
distribution shape does not play a significant role in the
luminosity after a short time into the quiescence period.
Prior to quiescence, between close outbursts, and for a
short time into the quiescence period, these shapes play
a role in simulated luminosities.

There is also the question about how precise the
cooling curve simulations are. Changing the number of
simulation runs affects the point at which values become
significant. Small step sizes in the positive time section
of the cooling period also have an affect on the p-values,
creating fluctuating significance. With larger step sizes
though, this uncertainty, possibly due to boundary con-
ditions within the NSCool simulation, have little effect.

These conclusions are only based on a small selec-
tion of accretion shapes. The next step will be to vary
the size and separation between the main event and the
trailing event to get a clear picture if small, trailing ac-
cretion outbursts could cause observable effects on the
initial conditions of the next larger outburst.

[1] N. K. Glendenning, Compact Stars, 2nd ed., Astronomy
and Astrophysics Library (Springer, 2000).

[2] B. P. Abbott and et al. (LIGO Scientific Collaboration
and Virgo Collaboration), Gw170817: Observation of
gravitational waves from a binary neutron star inspiral,
Phys. Rev. Lett. 119, 161101 (2017).

[3] E. Brown, L. Bildsten, and R. Rutledge, Crustal heating
and quiescent emission from transiently accreting neu-
tron stars, The Astrophysical Journal 505, L95 (1998).

[4] L. S. Ootes, R. Wijnands, D. Page, and N. Degenaar,
A cooling neutron star crust after recurrent outbursts:
modelling the accretion outburst history of aql x-1,
Monthly Notices of the Royal Astronomical Society 477,
2900–2916 (2018).

[5] Z. Meisel, A. Deibel, L. Keek, P. Shternin, and J. Elfritz,
Nuclear physics of the outer layers of accreting neutron
stars, Journal of Physics G: Nuclear and Particle Physics
45, 093001 (2018).

[6] B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaf-
fre, and F. Timmes, Modules for Experiments in Stellar

Astrophysics (MESA), 192, 3 (2011), arXiv:1009.1622
[astro-ph.SR].

[7] B. Paxton, M. Cantiello, P. Arras, L. Bildsten, E. F.
Brown, A. Dotter, C. Mankovich, M. H. Montgomery,
D. Stello, F. X. Timmes, and R. Townsend, Modules for
Experiments in Stellar Astrophysics (MESA): Planets,
Oscillations, Rotation, and Massive Stars, 208, 4 (2013),
arXiv:1301.0319 [astro-ph.SR].

[8] B. Paxton, P. Marchant, J. Schwab, E. B. Bauer, L. Bild-
sten, M. Cantiello, L. Dessart, R. Farmer, H. Hu,
N. Langer, R. H. D. Townsend, D. M. Townsley, and
F. X. Timmes, Modules for Experiments in Stellar Astro-
physics (MESA): Binaries, Pulsations, and Explosions,
220, 15 (2015), arXiv:1506.03146 [astro-ph.SR].

[9] B. Paxton, J. Schwab, E. B. Bauer, L. Bildsten,
S. Blinnikov, P. Duffell, R. Farmer, J. A. Goldberg,
P. Marchant, E. Sorokina, A. Thoul, R. H. D. Townsend,
and F. X. Timmes, Modules for Experiments in Stellar
Astrophysics (MESA): Convective Boundaries, Element
Diffusion, and Massive Star Explosions, 234, 34 (2018),

6

arXiv:1710.08424 [astro-ph.SR].
[10] B. Paxton, R. Smolec, J. Schwab, A. Gautschy, L. Bild-

sten, M. Cantiello, A. Dotter, R. Farmer, J. A. Goldberg,
A. S. Jermyn, S. M. Kanbur, P. Marchant, A. Thoul,
R. H. D. Townsend, W. M. Wolf, M. Zhang, and
F. X. Timmes, Modules for Experiments in Stellar As-
trophysics (MESA): Pulsating Variable Stars, Rotation,
Convective Boundaries, and Energy Conservation, 243,
10 (2019), arXiv:1903.01426 [astro-ph.SR].

[11] F. J. Rogers and A. Nayfonov, Updated and Expanded
OPAL Equation-of-State Tables: Implications for Helio-
seismology, Astrophys. J. 576, 1064 (2002).

[12] D. Saumon, G. Chabrier, and H. M. van Horn, An Equa-
tion of State for Low-Mass Stars and Giant Planets, 99,
713 (1995).

[13] O. R. Pols, C. A. Tout, P. P. Eggleton, and Z. Han,
Approximate input physics for stellar modelling, 274,
964 (1995), astro-ph/9504025.

[14] F. X. Timmes and F. D. Swesty, The Accuracy, Con-
sistency, and Speed of an Electron-Positron Equation of
State Based on Table Interpolation of the Helmholtz Free
Energy, 126, 501 (2000).

[15] A. Y. Potekhin and G. Chabrier, Thermodynamic Func-
tions of Dense Plasmas: Analytic Approximations for
Astrophysical Applications, Contributions to Plasma
Physics 50, 82 (2010), arXiv:1001.0690 [physics.plasm-
ph].

[16] C. A. Iglesias and F. J. Rogers, Radiative opacities for
carbon- and oxygen-rich mixtures, Astrophys. J. 412, 752
(1993).

[17] C. A. Iglesias and F. J. Rogers, Updated Opal Opacities,
Astrophys. J. 464, 943 (1996).

[18] J. W. Ferguson, D. R. Alexander, F. Allard, T. Barman,
J. G. Bodnarik, P. H. Hauschildt, A. Heffner-Wong, and
A. Tamanai, Low-Temperature Opacities, Astrophys. J.
623, 585 (2005), astro-ph/0502045.

[19] J. R. Buchler and W. R. Yueh, Compton scattering opac-
ities in a partially degenerate electron plasma at high
temperatures, Astrophys. J. 210, 440 (1976).

[20] S. Cassisi, A. Y. Potekhin, A. Pietrinferni, M. Catelan,
and M. Salaris, Updated Electron-Conduction Opacities:
The Impact on Low-Mass Stellar Models, Astrophys. J.
661, 1094 (2007), astro-ph/0703011.

[21] C. Angulo, M. Arnould, M. Rayet, P. Descouvemont,
D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi,
P. Aguer, C. Rolfs, R. Kunz, J. W. Hammer, A. Mayer,

T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou,
S. degl’Innocenti, G. Fiorentini, B. Ricci, S. Zavatarelli,
C. Providencia, H. Wolters, J. Soares, C. Grama,
J. Rahighi, A. Shotter, and M. Lamehi Rachti, A compi-
lation of charged-particle induced thermonuclear reaction
rates, Nuclear Physics A 656, 3 (1999).

[22] R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel,
K. Smith, S. Warren, A. Heger, R. D. Hoffman,
T. Rauscher, A. Sakharuk, H. Schatz, F. K. Thielemann,
and M. Wiescher, The JINA REACLIB Database: Its
Recent Updates and Impact on Type-I X-ray Bursts,
189, 240 (2010).

[23] G. M. Fuller, W. A. Fowler, and M. J. Newman, Stel-
lar weak interaction rates for intermediate-mass nuclei.
IV - Interpolation procedures for rapidly varying lepton
capture rates using effective log (ft)-values, Astrophys. J.
293, 1 (1985).

[24] T. Oda, M. Hino, K. Muto, M. Takahara, and K. Sato,
Rate Tables for the Weak Processes of sd-Shell Nuclei in
Stellar Matter, Atomic Data and Nuclear Data Tables
56, 231 (1994).

[25] K. Langanke and G. Mart́ınez-Pinedo, Shell-model cal-
culations of stellar weak interaction rates: II. Weak rates
for nuclei in the mass range /A=45-65 in supernovae en-
vironments, Nuclear Physics A 673, 481 (2000), nucl-
th/0001018.

[26] A. I. Chugunov, H. E. Dewitt, and D. G. Yakovlev,
Coulomb tunneling for fusion reactions in dense matter:
Path integral MonteCarlo versus mean field, Phys. Rev.
D 76, 025028 (2007), arXiv:0707.3500.

[27] N. Itoh, H. Hayashi, A. Nishikawa, and Y. Kohyama,
Neutrino Energy Loss in Stellar Interiors. VII. Pair,
Photo-, Plasma, Bremsstrahlung, and Recombination
Neutrino Processes, 102, 411 (1996).

[28] E. F. Brown, dStar: Neutron star thermal evolution code
(2015), ascl:1505.034.

[29] R. Townsend, Mesa sdk for mac os, Version: 20190503
http://doi.org/10.5281/zenodo.2669543 (2019).

[30] F. J. Fattoyev, E. F. Brown, A. Cumming, A. Deibel,
C. J. Horowitz, B.-A. Li, and Z. Lin, Deep crustal heating
by neutrinos from the surface of accreting neutron stars,
Phys. Rev. C 98, 025801 (2018), arXiv:1710.10367 [astro-
ph.HE].

[31] L. Henyey and J. L. L’Ecuyer, Studies in stellar evolution.
viii. the time scale for the diffusion of energy in the stellar
interior, The Astrophysical Journal 156, 549 (1969).

Appendix A: Python Program

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 @author: austinsmith

5 DStar/NSCcool Wrapper program that generates and formats mass distributions for the inlist file

6

7 """

8

9 import matplotlib.pyplot as plt

10 import numpy as np

11 import os

12 from scipy.stats import skewnorm

13

14

7

15 """

16 --

17 function that produces mass distributions

18 --

19 """

20 def MandT(mu,sig ,skw ,multimodal ,modes ,uniform ,trailer ,start ,end ,steps):

21 #uniform distibution

22 if uniform == True:

23

24 #creating data

25 x = np.random.uniform(start ,end ,50)

26 bins=np.linspace(start ,end ,steps)

27 values , bins , _ = plt.hist(x,bins , density=True)

28 plt.clf()

29 area=np.diff(bins)*values

30 area=area *(10**18)

31

32 """

33 for i in range(0,len(area)):

34 a=area[i]

35 if a <(10**10):

36 area[i]=0

37 """

38

39 #formatting values for entry

40 Mdot=format(area[0],".3e")

41 for i in range(1,len(area)):

42 Mdot=Mdot+","+str(format(area[i],".3e"))

43 Mdot=Mdot.replace("+","")

44 Mdot=Mdot.replace("0.000 e00","0.0")

45 Mdot=Mdot+","+str(65-steps)+"*0.0"

46

47 Tbounds=str(bins [0])

48 for i in range(1,steps):

49 Tbounds=Tbounds+","+str(bins[i])

50 for i in range (1,(65- steps)+1):

51 Tbounds=Tbounds+","+str (105+i)

52 else:

53 #standard single skewed

54 if multimodal ==False:

55

56 #creating data

57 x = sig*skewnorm.rvs(skw ,size =50)+mu

58 bins=np.linspace(start ,end ,steps)

59 values , bins , _ = plt.hist(x,bins , density=True)

60 plt.clf()

61 area=np.diff(bins)*values

62

63

64 if trailer ==True:

65 x = (sig/2)*skewnorm.rvs(skw ,size =50)+(mu+6* sig)

66 bins=np.linspace(start ,end ,steps)

67 values , bins , _ = plt.hist(x,bins , density=True)

68 plt.clf()

69 area51=np.diff(bins)*values

70 area=area *(10**18 -10**16)

71 area=area+area51 *(10**16)

72 else:

73 area=area *(10**18)

74 """

75 for i in range(0,len(area)):

76 a=area[i]

77 if a <(10**10):

78 area[i]=0

79 """

80

81 #formatting

82 Mdot=format(area[0],".3e")

8

83 for i in range(1,len(area)):

84 Mdot=Mdot+","+str(format(area[i],".3e"))

85 Mdot=Mdot.replace("+","")

86 Mdot=Mdot.replace("0.000 e00","0.0")

87 Mdot=Mdot+","+str(65-steps)+"*0.0"

88

89 Tbounds=str(bins [0])

90 for i in range(1,steps):

91 Tbounds=Tbounds+","+str(bins[i])

92 for i in range (1,(65- steps)+1):

93 Tbounds=Tbounds+","+str (105+i)

94

95 #Multimodal set up

96 if multimodal ==True:

97 Tarea =[0]*(steps -1)

98 for j in range(modes ,0,-2):

99

100 #creating data

101 x = 0

102 y = 0

103 x = ((sig*skewnorm.rvs(skw ,size =50))+(mu+((j-1)*mu)/modes))

104 y = ((sig*skewnorm.rvs(-skw ,size =50))+(mu -((j-1)*mu)/modes))

105 bins=np.linspace(start ,end ,steps)

106

107 xvalues , bins , _ = plt.hist(x,bins , density=True)

108 plt.clf()

109 yvalues , bins , _ = plt.hist(y,bins , density=True)

110 plt.clf()

111

112 xarea=np.diff(bins)*xvalues

113 yarea=np.diff(bins)*yvalues

114

115

116

117 xarea=(xarea *(10**18))/modes

118

119

120 yarea=(yarea *(10**18))/modes

121

122 for t in range(0,len(xarea)):

123 xa=xarea[t]

124 """

125 if xa <(10**10):

126 xarea[t]=0

127 """

128 if j !=1:

129 Tarea[t]=Tarea[t]+xarea[t]

130

131 for u in range(0,len(yarea)):

132 ya=yarea[u]

133 """

134 if ya <(10**10):

135 yarea[u]=0

136 """

137 Tarea[u]=Tarea[u]+yarea[u]

138

139

140

141

142 #formatting

143 Mdot=format(Tarea[0],".3e")

144 for i in range(1,len(Tarea)):

145 Mdot=Mdot+","+str(format(Tarea[i],".3e"))

146 Mdot=Mdot.replace("+","")

147 Mdot=Mdot.replace("0.000 e00","0.0")

148 Mdot=Mdot+","+str(65-steps)+"*0.0"

149

150 Tbounds=str(bins [0])

151 for i in range(1,steps):

152 Tbounds=Tbounds+","+str(bins[i])

9

153 for i in range (1,(65- steps)+1):

154 Tbounds=Tbounds+","+str (105+i)

155 return(Mdot ,Tbounds)

156

157 """

158 --

159 constants and some calculations for luminocities

160 --

161 """

162 MassSun =1.9891*10**30 #kilograms

163 MassNS =1.6* MassSun

164

165 R=10.42*10**3 #radius in meters

166

167 G=6.67408*10** -11 #m3 kg -1 s-2

168 sigSB =5.670374*10** -8 #Wm^-2K^-4

169 c=299792458 #m/s

170

171 Rinf=R*1/(np.sqrt (1-2*G*MassNS /(R*c**2)))

172

173 """

174 --

175 main routine for calculating and plotting

176 --

177 """

178 multi=False #multiple modes or not

179 unif=False #uniform or not

180 cntr=-45 #center

181 sprd=5 #spead

182 skw=0 #skew

183 numModes =2 #number of modes for multimodal

184 start=-90 #starting epoch for mass accretion

185 end=0 #ending epoch for mass accretion

186 steps =45 #number of steps

187 smpl =100 #number of samples

188 trailer=False

189

190 tauPerRun =[]

191

192 for i in range(0,smpl):

193

194

195

196 #(center ,spread ,skew ,multimodal?,number of modes ,?,start ,stop ,steps)

197 #--

198 Mdot ,Tbounds=MandT(cntr ,sprd ,skw ,multi ,numModes ,unif ,trailer ,start ,end ,steps)

199 #--

200

201 #inputting the mass and time bounds to inlist file

202 with open(’inlist ’,’r’) as file:

203 input=file.readlines ()

204 input [30]= str(" epoch_Mdots = "+Mdot+"\n")

205 input [31]= str(" epoch_boundaries = "+Tbounds+"\n")

206 with open(’inlist ’,’w’) as file:

207 file.writelines(input)

208

209 #running dStar

210 os.system("./ run_dStar -D/Users/austinsmith/Documents/dStar > Output.txt")

211

212 #extracting Teff from output

213 lookup=str("-----------")

214

215

216 Time =[]

217 Teff =[]

218 Linf =[]

10

219 num=0

220 line=0

221 b=0

222

223 with open(’Output.txt’,’r’) as file:

224 data=file.readlines ()

225 with open(’Output.txt’,’r’) as file:

226 for num ,line in enumerate(file ,0):

227 if lookup in line:

228 index=num

229

230

231 for b in range (index+1,index +60):

232 dLine=data[b].split()

233 Time.append(float(dLine [0]))

234 Teff.append(float(dLine [1]))

235

236 #creating mdot array

237 Mdot=Mdot.split(’,’)

238 for y in range(0,len(Mdot) -1):

239 Mdot[y]=float(Mdot[y])

240 Mdot[len(Mdot) -1]=0.0

241

242 #creating Time arrays

243 Tbounds=Tbounds.split(’,’)

244 for y in range(0,len(Tbounds)):

245 Tbounds[y]=float(Tbounds[y])

246

247 TimeM =[]

248 for yy in range(0,len(Tbounds)):

249 if Tbounds[yy] <= 0.0:

250 TimeM.append(Tbounds[yy])

251

252

253 #luminocity array

254 for k in range(0,len(Teff)):

255 Linf.append (4*np.pi*sigSB*(Rinf **2)*(Teff[k]**4))

256

257

258 #converting from array to np array

259 if i==0:

260 TotalM=np.array([Mdot])

261 TotalT=np.array([Teff])

262 TotalL=np.array([Linf])

263

264 if i>0:

265 TotalM=np.append(TotalM ,[Mdot],axis =0)

266 TotalT=np.append(TotalT ,[Teff],axis =0)

267 TotalL=np.append(TotalL ,[Linf],axis =0)

268

269 """

270

--

271 Finding saved values to calculate diffusion

272

--

273 This is all very very ineffeicient , as far as for loops go ,

274 but this could be easily cleaned up or expanded to look at

275 all zones and profiles for a given run of dStar.

276 """

277

278

279 #reading the output to see how many models/profiles to read in

280 modelF=int((data[index -4]. split())[0])

281 models =[]

282 for b in range(1,modelF +1): #profile --------------------

283

284 #opening profiles

11

285 profile=str(’LOGS/profile ’+str(b))

286 with open(profile ,’r’) as file:

287 data=file.readlines ()

288 length = len(data) #how many rows are in a profile

289

290 #finding the time of the model

291 modelTime=float((data [4]. split ())[1])

292

293 #initializing arrays

294 P=[]

295 rho =[]

296 g=[]

297 Cp=[]

298 K=[]

299

300

301

302 #if the model time is around day 0

303 if modelTime > -1 and modelTime < 1:

304 for d in range(9,length): #ZONE ---------------------

305

306 #creating arrays of the data from the zone

307 zonedata=data[d]. split()

308

309 P.append(float(zonedata [9]))

310 rho.append(float(zonedata [10]))

311 g.append(float(zonedata [4]))

312 Cp.append(float(zonedata [16]))

313 K.append(float(zonedata [19]))

314

315 #converting to numpy arrays

316 npP=np.array ([P])

317 npRho=np.array([rho])

318 npG=np.array ([g])

319 npCp=np.array ([Cp])

320 npK=np.array ([K])

321

322

323

324 #making dP array

325 dP = np.zeros_like(npP)

326 dP [0][0] = npP [0][0]

327

328 #finding dP values

329 for tt in range(1,dP.shape [1]):

330 dP[0][tt] = npP [0][tt]-npP [0][tt -1]

331

332

333 #calcualting the integrand

334 integrand = np.sqrt(npRho*npCp/npK)/(npRho*npG)

335

336 #making tau array

337 tau = np.zeros_like(integrand)

338 # tau is in units of seconds

339 # divide by 86400 to get it in units of days

340

341 lengthT=tau.shape [1]

342

343

344 #computing tau for every zone

345 for ii in range(1,lengthT):

346 tau [0][ii] = 0.25*((integrand [0][ii]*dP[0][ii]))**2

347

348 #appending the total thermal diffusion time in days at for the models around day 0

349 tauPerRun.append(np.sum(tau)/86400)

350

351

352

353

354 npTau=np.array([tauPerRun])

12

355 aveTau=np.mean(npTau)

356 sdTau=np.std(npTau)

357

358

359

360 print("Average tau = "+str(aveTau)+" +/- "+str(sdTau))

361

362 TotalL=TotalL *(10**12) #converting Luminocites to watts

363

364 #average and sd of mass , temp , luminocity

365 AveM=np.mean(TotalM ,axis =0)

366 AveT=np.mean(TotalT ,axis =0)

367 AveL=np.mean(TotalL ,axis =0)

368

369 SdM=np.std(TotalM ,axis =0)

370 SdT=np.std(TotalT ,axis =0)

371 SdL=np.std(TotalL ,axis =0)

372

373

374

375 #print(len(TimeM))

376 #print(len(AveM))

377 tStep=np.abs(start -end)/(steps -1)

378

379 TotM=np.sum([i * tStep for i in AveM]) *86400

380

381 #print(TotM)

382 #print(TimeM)

383 #print(AveM)

384

385

386 """

387 --

388 plotting

389 --

390 """

391 fig , (ax1 ,ax4) = plt.subplots (1,2,sharey=True ,figsize =(7, 4),dpi =500)

392

393 ax21 = ax1.twinx() # instantiate a second axis that shares the same x-axis

394 ax31 = ax1.twinx()

395

396 ax22 = ax4.twinx() # instantiate a second axis that shares the same x-axis

397 ax32 = ax4.twinx() # instantiate a second axis that shares the same x-axis

398

399 ax1.set_xlim(start ,1)

400 ax4.set_xlim (1 ,100000)

401 ax4.set_xscale(’log’)

402

403 #--

404 #plotting mass

405 color = ’tab:blue’

406 ax1.set_ylabel(’Mass Accretion rate (g/s)’) # we already handled the x-label with ax1

407 ax4.spines[’left’]. set_visible(False)

408 ax1.spines[’right ’]. set_visible(False)

409

410 ax1.bar(TimeM , AveM ,width =(np.abs(start -end)/steps),yerr=SdM ,capsize=1,label =(’Total Mass Accreted=

’ +"{:.3e}".format(TotM)+’g’),color=’pink’)

411 ax1.set_yscale(’log’)

412 ax4.set_yscale(’log’)

413 ax1.set_ylim (0 ,10**18)

414 ax4.set_ylim (0 ,10**18)

415

416 ax4.get_yaxis ().set_visible(False)

417

418

419 #--

420

421 #--

13

422 #plotting Teff

423 color = ’tab:red’

424

425 ax21.errorbar(Time , AveT ,yerr=SdT ,fmt=’.’,linewidth=1,ms=3,capsize=1,mew =0.5)

426

427 ax21.set_yscale(’log’)

428 ax21.get_yaxis ().set_visible(False)

429 ax21.set_ylim (0,1)

430 ax21.spines[’right ’]. set_visible(False)

431

432 #plotting Teff

433 ax22.set_xlabel(’Time (Days)’)

434 ax22.set_ylabel(r’T$_{eff}$ (MK)’,labelpad =-5)

435 ax22.errorbar(Time , AveT ,yerr=SdT ,fmt=’.’,linewidth=1,ms=3,capsize=1,mew=0.5, label =(r’T$_{eff}$’))

436 ax22.set_yscale(’log’)

437 ax22.spines[’left’]. set_visible(False)

438 ax22.set_ylim (0,1)

439

440

441 #--

442 #a bit of plotting code i found online

443 def make_patch_spines_invisible(ax):

444 ax.set_frame_on(True)

445 ax.patch.set_visible(False)

446 for sp in ax.spines.values ():

447 sp.set_visible(False)

448 # Offset the right spine of par2. The ticks and label have already been

449 # placed on the right by twinx above.

450 ax32.spines["right"]. set_position (("axes", 1.35))

451 # Having been created by twinx , par2 has its frame off , so the line of its

452 # detached spine is invisible. First , activate the frame but make the patch

453 # and spines invisible.

454 make_patch_spines_invisible(ax32)

455 # Second , show the right spine.

456 ax32.spines["right"]. set_visible(True)

457 #--

458

459 #plotting luminocity

460 color = ’tab:black ’

461 ax31.errorbar(Time , AveL ,yerr=SdL ,fmt=’.’,linewidth=1,ms=3,capsize=1,mew=0.5, color=’k’)

462 ax31.set_yscale(’log’)

463 ax31.set_ylim (0 ,10**14)

464 ax31.get_yaxis ().set_visible(False)

465 ax31.spines[’right ’]. set_visible(False)

466

467 ax32.set_ylabel(’Luminosity (TW)’) # we already handled the x-label with ax1

468 ax32.errorbar(Time , AveL ,yerr=SdL ,fmt=’.’,linewidth=1,ms=3,capsize=1,mew=0.5, color=’k’,label=(’L$

^{\ infty}$$_{ph}$’))

469 ax32.set_yscale(’log’)

470 ax32.spines[’left’]. set_visible(False)

471 ax32.tick_params(axis=’y’)

472 ax32.set_ylim (0 ,10**14)

473

474

475 fig.legend(loc=’upper center ’, bbox_to_anchor =(0.4, 1.1),shadow=True , ncol =3)

476 fig.tight_layout () # otherwise the right y-label is slightly clipped

477

478 fig.subplots_adjust(wspace=0,hspace =0)

479

480 fig.text (0.5 ,0.02 , ’Time (d)’, ha=’center ’, va=’center ’)

481 plt.setp(ax1.xaxis.get_majorticklabels (),ha="right")

482 plt.setp(ax4.xaxis.get_majorticklabels (),ha="left")

483

484

485 plt.savefig("Plot.png",bbox_inches=’tight’)

486

487 """

488 --

489 statistics

14

490 --

491 """

492

493 if multi==True:

494 m="T"

495 else:

496 m="F"

497

498 if unif==True:

499 u="T"

500 else:

501 u="F"

502

503 input= "\n"+str((smpl))+", "+str(cntr)+", "+str(sprd)+", "+str(skw)+", "+str(numModes)+", "+m+", "+

u+"\n Averages Lum: ,"+str(list(AveL))[1: -1]+"\n Sd Lum: ,"+ str(list(SdL))[1:-1]

504 file=open(’LumOut.txt’,’a’)

505 file.write(input) #line not found

